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Abstract. Berry’s phase is calculated for coherent states of the supersymmetric harmonic 
oscillator with the parameters of the coherent states taken to be slowly changing. Interest- 
ingly, these supercoherent states are eigenstates of the displaced Jaynes-Cummings 
Hamiltonian. 

The adiabatic theorem of quantum mechanics states that a system prepared in an 
eigenstate of its Hamiltonian will remain in an instantaneous eigenstate, as the Hamil- 
tonian is varied, provided that the variation is carried out slowly enough [l]. If the 
motion is cyclic, then the system will return to its original eigenstate multiplied by a 
dynamical phase factor [ 13.  In 1984, Berry [2] showed that this theorem is incomplete. 
In addition to the dynamical phase, the system will also acquire a geometrical phase. 
This phase is non-integrable and depends on the path transversed in parameter space. 
Berry proposed that this phase should be observable by interfering two properly 
prepared systems. 

Much experimental and theoretical work on geometrical phases has appeared since 
Berry’s seminal work. The theoretical work can be roughly classified into three areas: 

(i) generalising the conditions under which such geometrical phases should exist; 
(ii) providing alternative methods for calculating the phase; and 
(iii) reinterpreting other quantal phases as manifestations of the more general 

geometrical phase. 
The majority of the progress in area (ii) has come from group theoretical methods 

[3], WKB [4], coherent states [5], and path integral formalisms [6]. Examples of work 
in area (iii) are Bohr-Sommerfeld and Maslov [7], Aharanov-Bohm [8] and Born- 
Oppenheimer [9] phases. While areas (ii) and (iii) are of great interest theoretically, 
perhaps the most important area is (i). 

As originally formulated, Berry’s argument required that the eigenstate be non- 
degenerate and that the evolution be adiabatic and cyclic. All three requirements have 
now been removed [lo], thus allowing a much wider range of applicability. Experi- 
mentally, geometrical phases have been observed in optical fibres [ 113,  laser 
inteferometry [ 121, spin resonance [ 131, molecular physics [ 141 and neutron spin [ 151. 
More recently, the time evolution of Berry’s phase has been studied [ 161. 

Coherent states have long held interest as providing a method of examining the 
semiclassical behaviour of systems [17]. Much of the renewed interest in coherent 
states has arisen from the identification of squeezed states as generalised coherent 
states associated with SU(1, 1 )  and SU(2) [18], and for obtaining information on the 
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topology of the system. A path integral formalism has been used to explit this for the 
coherent states of the groups SU(2), S U ( 1 , l )  and others [9]. 

In this letter, we study the supercoherent states introduced by Aragone and Zypman 
[20] and further studied by Orszag and Salamo [21]. These supercoherent states are 
eigenstates of strong coupling limits of the displaced Jaynes-Cummings Hamiltonian. 

Supercoherent states were introduced in [20] as eigenstates of the supersymmetric 
annihilation operator, A, of the quantum mechanical supersymmetric harmonic oscil- 
lator: 

There are two linearly independent orthogonal supercoherent states, which are referred 
to in [20] as fermionic and supersymmetric. The fermionic supercoherent state is a 
minimum uncertainity state in the sense of Perelomov [22]. Explicitly, 

where iz)= 9(z) /O).  In (3 ) ,  9 ( z )  =exp(za'-z*a),  the displacement operator for the 
usual harmonic oscillator coherent state. 

In [21] it was shown that the supercoherent state can be generated by a displacement 
operator, which is diagonal for the fermionic supercoherent state: 

We now ask the question 'for what Hamiltonian are these supercoherent states eigen- 
states?' Consider the operator 

x(O)=,a.a=o["+u a '  l f a ' a  1. 
Upon substitution, we find 

Direct calculation of ( 5 )  yields 

with 

H : =  w(a'-z*)(a - z ) + & J  

and 

(4) 
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These are not the usual Pauli matrices, but it is simple to check that they form a 
realisation of su(2). The notation in (5) is introduced in anticipation of the construction 
of Berry's phase. Comparison of (6) with [23] shows that this Hamiltonian is just the 
strong coupling limit of the displaced Jaynes-Cummings Hamiltonian. We can also 
rewrite (6a) as: 

X( t )  = H f +  a.  U = 9(z)a 'XJ'9(z) '  (7a)  

with 

a=$w[(a i -z*)+(a-z) , i (a+-z*) - i (a  --z),1] 

and 

2" = U ( a  'a + f) + f w a ,  + w a i n  + waa+ . 

To formulate a transition amplitude for the supercoherent states we consider a 
Hamiltonian constructed from the generators of the group. The propagator is then 
given by the time-ordered exponential: 

In (8), the supercoherent state is taken to be either a fermionic or a supersymmetric 
supercoherent state. As usual, we divide the time interval AT = t 2 -  r l  into n equal 
parts E = ( t '  - t ) / n  and take the limit as n + 03. Thus to first order in E ,  we obtain: 

T = n k (2'1 exp( - f H (  k ) )  1 )  (9) 

where H (  k)  = H( f k ) .  The decomposition of unity is inserted between each of the equal 
time intervals, leading to: 

where %'( k) = (ZklH( k)lZk). The notation here is that t2 = tn and t ,  = to. The overlap 
between supercoherent states is given in [20]. Inserting this expression we find 

with Azk+l = zk+l - zk. Thus one obtains the expression for the transition amplitudes 

This can be written formally as 
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where 

9’=[:2dt 

and 

hi 
2 

2 = - ( z f z *  - Z*)Z) - 2 

are the action and Lagrangian, respectively. In (14), the prime denotes time differenti- 
ation. This equation leads to Lagrange’s equations of motion: 

d a 2  a y  d a 2  a 2  
d t  azf  az dt  az*’ az* 

- 0  - 0  

from which we obtain 

We now consider the strong coupling limit of the displaced Jaynes-Cummings 
Hamiltonian given in (7c)  and the fermionic supercoherent states. We can easily show 
that the supercoherent states are eigenstates of this Hamiltonian. In fact, by following 
the procedure in [5], we want to construct a time-dependent Hamiltonian of the form 
H ( t )  = U ( t ) H ( 0 ) U t .  The Berry’s phase is then constructed by taking U ( t )  = 9 ( g ( t ) ) ,  
where g is a generator in the Lie algebra, and H ( 0 )  is restricted to the Cartan subalgebra. 
Then, starting with an eigenstate of H ( O ) ,  la), the state at time t is a generalised 
coherent state 9 ( g (  t))la> [22]. 

By taking the parameters of the coherent state to be slowly varying, we can construct 
the Berry phase for the system. By differentiation of the supercoherent state or by use 
of the path integral formalism, we find: 

This is the same result that one obtains for the usual harmonic oscillator coherent 
states. This is not entirely unexpected, since the overlaps of the supercoherent states 
and that for the usual harmonic oscillator coherent states are the same. 

We have used a path integral formalism to arrive at the equations of motion and 
Berry’s phase for the supercoherent states introduce in [20]. Following the well defined 
prescription in [ 51, we have constructed our time-dependent Hamiltonian, which is 
the strong coupling limit of the Jaynes-Cummings Hamiltonian. This Hamiltonian has 
been studied recently in connection with the generation of second harmonics and as 
well as with the interaction of one atom with a single mode field. 
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